Part Number Hot Search : 
AD825 DO1605T AH892 GDZ20D 2SB1492 LL5230B BD989 TDA726
Product Description
Full Text Search
 

To Download R1211N002A06 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 R1211x SERIES
STEP-UP DC/DC CONTROLLER
NO.EA-088-0604
OUTLINE
The R1211x Series are CMOS-based PWM step-up DC/DC converter controllers with low supply current. Each of the R1211x Series consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a reference current unit, a protection circuit, and an under voltage lockout (UVLO) circuit. A low ripple, high efficiency step-up DC/DC converter can be composed of this IC with some external components, or an inductor, a diode, a power MOSFET, divider resisters, and capacitors. Phase compensation has been made internally in the R1211x002B/D Series, while phase compensation can be made externally as for R1211x002A/C Series. B/D version has stand-by mode. Max duty cycle is internally fixed typically at 90%. Soft start function is built-in, and Soft-starting time is set typically at 9ms(A/B, 700kHz version) or 10.5ms(C/D, 300kHz version). As for the protection circuit, after the soft-starting time, if the maximum duty cycle is continued for a certain period, the R1211x Series latch the external driver with its off state, or Latch-type protection circuit works. The delay time for latch the state can be set with an external capacitor. To release the protection circuit, restart with power-on (Voltage supplier is equal or less than UVLO detector threshold level), or once after making the circuit be stand-by with chip enable pin and enable the circuit again.
FEATURES
* * * * * * * * Standby Current ................................................Typ. 0A (for B/D version) Input Voltage Range .........................................2.5V to 6.0V Built-in Latch-type Protection Function (Output Delay Time can be set with an external capacitor) Two Options of Basic Oscillator Frequency ......300kHz, 700kHz Max Duty Cycle.................................................Typ. 90% High Reference Voltage Accuracy ....................1.5% U.V.L.O. Threshold level ...................................Typ. 2.2V (Hysteresis Typ. 0.13V) Small Packages ................................................SOT-23-6W or thin (package height Max. 0.85mm) SON-6
APPLICATIONS
* Constant Voltage Power Source for portable equipment. * Constant Voltage Power Source for LCD and CCD.
1
R1211x
BLOCK DIAGRAMS
Version A/C
VFB AMPOUT
Vref OSC DTC
Version B/D
EXT VIN
OSC
VFB
DTC
EXT
+ -
+
+ -
VIN
GND
Vref
+
GND
UVLO
UVLO
CE
Chip Enable
SELECTION GUIDE
In the R1211x Series, the oscillator frequency, the optional function, and the package type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below;
R1211x002x-TR
a b
Part Number
Code a
Contents Designation of Package Type: D: SON-6 N: SOT23-6W Designation of Optional Function A : 700kHz, with AMPOUT pin (External Phase Compensation Type) B : 700kHz, with CE pin (Internal Phase Compensation Type, with Stand-by) C : 300kHz, with AMPOUT pin (External Phase Compensation Type) D : 300kHz, with CE pin (Internal Phase Compensation Type, with Stand-by)
b
2
-
Latch
Latch
+
-
DELAY
+ -
+
+ -
DELAY
R1211x
PIN CONFIGURATIONS
SON-6 Top View
6 5 4
SOT-23-6W
6 5 4
4 5 6
Bottom View
EXT
GND (MARK SIDE)
VIN
DELAY AMPOUT/CE
VFB
1
2
3
3
2
1
1
2
3
PIN DESCRIPTIONS
Pin No SON6 1 2 3 4 5 6 SOT23-6W 1 5 6 4 3 2 DELAY GND EXT VIN VFB AMPOUT or CE Pin for External Capacitor (for Setting Output Delay of Protection) Ground Pin External FET Drive Pin (CMOS Output) Power Supply Pin Feedback Pin for monitoring Output Voltage Amplifier Output Pin(A/C Version) or Chip Enable Pin(B/D Version, Active at "H") Symbol Pin Description
* Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns.
ABSOLUTE MAXIMUM RATINGS
Symbol VIN VEXT VDLY VAMP VCE VFB IAMP IEXT PD Topt Tstg VIN Pin Voltage EXT Pin Output Voltage DELAY Pin Voltage AMPOUT Pin Voltage CE Pin Input Voltage VFB Pin Voltage AMPOUT Pin Current EXT Pin Inductor Drive Output Current Power Dissipation (SOT-23-6W)* Power Dissipation (SON-6)* Operating Temperature Range Storage Temperature Range Item Rating 6.5 -0.3 ~ VIN+0.3 -0.3 ~ VIN+0.3 -0.3 ~ VIN+0.3 -0.3 ~ VIN+0.3 -0.3 ~ VIN+0.3 10 50 430 500 -40 ~ +85 -55 ~ +125 mW C C Unit V V V V V V mA mA
* ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described.
3
R1211x
ELECTRICAL CHARACTERISTICS
*
R1211x002A
Topt=25C
Symbol VIN VFB VFB/T IFB fOSc fOSc/T IDD1 maxdty REXTH REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 IAMP1 IAMP2
Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 Maximum Duty Cycle EXT "H" ON Resistance EXT "L" ON Resistance Delay Pin Charge Current Delay Pin Discharge Current Delay Pin Detector Threshold Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis AMP "H" Output Current AMP "L" Output Current
Conditions
Min. 2.5
Typ.
Max. 6.0
Unit V V ppm/C
VIN=3.3V -40C
< =
0.985 Topt
< =
1.000 150
1.015
85C -0.1 595
VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40C
< =
0.1 700 1.4 600 900 94 10 6 7.5 9.0 1.05 13.5 2.3 0.18 1.50 90 805
A kHz kHz/C A % A mA V ms V V mA A
Topt
< =
85C
VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V,VDLY=0V2V VIN=3.3V at 90% of rising edge VIN=3.3V0V, VDLY=VFB=0V VIN=0V3.3V, VDLY=VFB=0V VIN=3.3V, VAMP=1V, VFB=0.9V VIN=3.3V, VAMP=1V, VFB=1.1V 2.5 2.5 0.95 4.5 2.1 0.08 0.45 30 82
90 5 3 5.0 5.5 1.00 9.0 2.2 0.13 0.90 60
4
R1211x
*
R1211x002B
Topt=25C
Symbol VIN VFB VFB/T IFB fOSC fOSC/ T IDD1 maxdty REXTH REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 ISTB ICEH ICEL VCEH VCEL
Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 Maximum Duty Cycle EXT "H" ON Resistance EXT "L" ON Resistance Delay Pin Charge Current Delay Pin Discharge Current Delay Pin Detector Threshold Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis Standby Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage
Conditions
Min. 2.5
Typ.
Max. 6.0
Unit V V ppm/C
VIN=3.3V -40C
< =
0.985 Topt
< =
1.000 150
1.015
85C -0.1 595
VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40C
< =
0.1 700 1.4 600 900 94 10 6 7.5 9.0 1.05 13.5 2.3 0.18 1 0.5 0.5 805
A kHz kHz/C A % A mA V ms V V A A A V V
Topt
< =
85C
VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V, VDLY=0V2V VIN=3.3V VIN=3.3V0V, VDLY=VFB=0V VIN=0V3.3V, VDLY=VFB=0V VIN=6V, VCE=0V VIN=6V, VCE=6V VIN=6V, VCE=0V VIN=6V, VCE=0V6V VIN=2.5V, VCE=2V0V -0.5 -0.5 1.5 2.5 2.5 0.95 4.5 2.1 0.08 82
90 5 3 5.0 5.5 1.00 9.0 2.2 0.13 0
0.3
5
R1211x
*
R1211x002C
Topt=25C
Symbol VIN VFB VFB/T IFB fOSC fOSC/T IDD1 maxdty REXTH REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 IAMP1 IAMP2
Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 Maximum Duty Cycle EXT "H" ON Resistance EXT "L" ON Resistance Delay Pin Charge Current Delay Pin Discharge Current Delay Pin Detector Threshold Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis AMP "H" Output Current AMP "L" Output Current
Conditions
Min. 2.5
Typ.
Max. 6.0
Unit V V ppm/C
VIN=3.3V -40C
< =
0.985 Topt
< =
1.000 150
1.015
85C -0.1 240
VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40C
< =
0.1 300 0.6 300 500 94 10 6 7.0 9.0 1.05 16.0 2.3 0.18 1.50 75 360
A kHz kHz/C A % A mA V ms V V mA A
Topt
< =
85C
VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V, VDLY=0V2V VIN=3.3V VIN=3.3V0V, VDLY=VFB=0V VIN=0V3.3V, VDLY=VFB=0V VIN=3.3V, VAMP=1V, VFB=0.9V VIN=3.3V, VAMP=1V, VFB=1.1V 2.0 2.5 0.95 5.0 2.1 0.08 0.45 25 82
90 5 3 4.5 5.5 1.00 10.5 2.2 0.13 0.90 50
6
R1211x
*
R1211x002D
Topt=25C
Symbol VIN VFB VFB/T IFB fOSC fOSC/T IDD1 maxdty REXTH REXTL IDLY1 IDLY2 VDLY TSTART VUVLO1 VUVLO2 ISTB ICEH ICEL VCEH VCEL
Item Operating Input Voltage VFB Voltage Tolerance VFB Voltage Temperature Coefficient VFB Input Current Oscillator Frequency Oscillator Frequency Temperature Coefficient Supply Current 1 Maximum Duty Cycle EXT "H" ON Resistance EXT "L" ON Resistance Delay Pin Charge Current Delay Pin Discharge Current Delay Pin Detector Threshold Soft-start Time UVLO Detector Threshold UVLO Detector Hysteresis Standby Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage
Conditions
Min. 2.5
Typ.
Max. 6.0
Unit V V ppm/C
VIN=3.3V -40C
< =
0.985 Topt
< =
1.000 150
1.015
85C -0.1 240
VIN=6V, VFB=0V or 6V VIN=3.3V, VDLY=VFB=0V -40C
< =
0.1 300 0.6 300 500 94 10 6 7.0 9.0 1.05 16.0 2.3 0.18 1 0.5 0.5 360
A kHz kHz/C A % A mA V ms V V A A A V V
Topt
< =
85C
VIN=6V, VDLY=VFB=0V, EXT at no load VIN=3.3V, EXT "H" side VIN=3.3V, IEXT=-20mA VIN=3.3V, IEXT=20mA VIN=3.3V, VDLY=VFB=0V VIN=VFB=2.5V, VDLY=0.1V VIN=3.3V, VFB=0V, VDLY=0V2V VIN=3.3V VIN=3.3V0V, VDLY=VFB=0V VIN=0V3.3V, VDLY=VFB=0V VIN=6V, VCE=0V VIN=6V, VCE=6V VIN=6V, VCE=0V VIN=6V, VCE=0V6V VIN=2.5V, VCE=2V0V -0.5 -0.5 1.5 2.0 2.5 0.95 5.0 2.1 0.08 82
90 5 3 4.5 5.5 1.00 10.5 2.2 0.13 0
0.3
7
R1211x
TYPICAL APPLICATIONS AND TECHNICAL NOTES

Inductor Diode VOUT
VIN C1 C2 DELAY
EXT
NMOS C4
R1 C3
VFB R3 GND AMPOUT C5 R4 R2
NMOS : IRF7601 (International Rectifier) Inductor : LDR655312T-100 10H (TDK) for R1211x002A : LDR655312T-220 22H (TDK) for R1211x002C Diode : CRS02 (Toshiba) C1 : 4.7F (Ceramic) C2 : 0.22F (Ceramic) C3 : 10F (Ceramic) C4 : 680pF (Ceramic) C5 : 2200pF (Ceramic) R1 : Output Voltage Setting Resistor 1 R2 : Output Voltage Setting Resistor 2 R3 : 30k R4 : 30k

Inductor Diode VOUT
VIN C1 C2 GND
EXT
NMOS C4
R1 C3
DELAY
VFB R3 CE CE Control R2
NMOS : IRF7601 (International Rectifier) Inductor : LDR655312T-100 10H (TDK) for R1211x002B : LDR655312T-220 22H (TDK) for R1211x002D Diode : CRS02 (Toshiba) C1 : 4.7F (Ceramic) C2 : 0.22F (Ceramic) C3 : 10F (Ceramic) C4 : 680pF (Ceramic) R1 : Setting Output Voltage Resistor 1 R2 : Setting Output Voltage Resistor 2 R3 : 30k
[Note] These example circuits may be applied to the output voltage requirement is 15V or less. If the output voltage requirement is 15V or more, ratings of NMOS and diode as shown above is over the limit, therefore, choose other external components.
8
R1211x
Use a 1F or more capacitance value of bypass capacitor between VIN pin and GND, C1 as shown in the typical applications above. * In terms of the capacitor for setting delay time of the latch protection, C2 as shown in typical applications of the previous page, connect between Delay pin and GND pin of the IC with the minimum wiring distance. * Connect a 1F or more value of capacitor between VOUT and GND, C3 as shown in typical applications of the previous page. (Recommended value is from 10F to 22F.) If the operation of the composed DC/DC converter may be unstable, use a tantalum type capacitor instead of ceramic type. * Connect a capacitor between VOUT and the dividing point, C4 as shown in typical applications of the previous page. The capacitance value of C4 depends on divider resistors for output voltage setting. Typical value is between 100pF and 1000pF. * Output Voltage can be set with divider resistors for voltage setting, R1 and R2 as shown in typical applications of the previous page. Refer to the next formula. Output Voltage = VFB x (R1+R2)/R2 R1+R2=100k is recommended range of resistances. * The operation of Latch protection circuit is as follows: When the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of B/D version. Otherwise, restart with power on. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2xVDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs "L". * As for R1211x002A/C version, the values and positioning of C4, C5, R3, and R4 shown in the above diagram are just an example combination. These are for making phase compensation. If the spike noise of VOUT may be large, the spike noise may be picked into VFB pin and make the operation unstable. In this case, a resistor R3, shown in typical applications of the previous page. The recommended resistance value of R3 is in the range from 10k to 50k. Then, noise level will be decreased. * As for R1211x002B/D version, EXT pin outputs GND level at standby mode. * Select the Power MOSFET, the diode, and the inductor within ratings (Voltage, Current, Power) of this IC. Choose the power MOSFET with low threshold voltage depending on Input Voltage to be able to turn on the FET completely. Choose the diode with low VF such as Shottky type with low reverse current IR, and with fast switching speed. When an external transistor is switching, spike voltage may be generated caused by an inductor, therefore recommended voltage tolerance of capacitor connected to VOUT is three times of setting voltage or more. The performance of power circuit with using this IC depends on external components. Choose the most suitable components for your application.
9
R1211x
Output Current and Selection of External Components

i2 Inductor VIN i1 LX Tr CL Diode VOUT IOUT
GND
Discontinuous Mode
IL ILxmax ILxmin ILxmin Tf Iconst t Ton T=1/fosc Toff Ton T=1/fosc Toff t IL
Continuous Mode
ILxmax
There are two modes, or discontinuous mode and continuous mode for the PWM step-up switching regulator depending on the continuous characteristic of inductor current. During on time of the transistor, when the voltage added on to the inductor is described as VIN, the current is VINxt/L. Therefore, the electric power, PON, which is supplied with input side, can be described as in next formula.
PON = V IN 2 x t/L dt .............................................................................................................................. Formula 1
0
Ton
With the step-up circuit, electric power is supplied from power source also during off time. In this case, input current is described as (VOUT - VIN) xt/L, therefore electric power, POFF is described as in next formula.
POFF =
Tf 0
VIN x (VOUT - VIN) x t/L dt ........................................................................................................ Formula 2
In this formula, Tf means the time of which the energy saved in the inductance is being emitted. Thus average electric power, PAV is described as in the next formula.
PAV = 1/(TON + TOFF) x {
Ton 0
VIN 2 x t/L dt +
Tf 0
VIN x (VOUT - VIN) x t/L dt} ................................................... Formula 3
In PWM control, when Tf = Toff is true, the inductor current becomes continuos, then the operation of switching regulator becomes continuous mode. In the continuous mode, the deviation of the current is equal between on time and off time.
VIN x TON/L = (VOUT - VIN) x Toff/L ................................................................................................... Formula 4
Further, the electric power, PAV is equal to output electric power, VOUT x IOUT, thus,
IOUT = fOSC x VIN 2 x TON 2 /{2 x L x (VOUT - VIN)} = VIN 2 x TON/(2 x L x VOUT) .................................................... Formula 5
10
R1211x
When IOUT becomes more than formula 5, the current flows through the inductor, then the mode becomes continuous. The continuous current through the inductor is described as Iconst, then,
IOUT = fOSC x VIN 2 x TON 2 /{2 x L x (VOUT - VIN)} + VIN x Iconst/V OUT ...............................................................Formula 6
In this moment, the peak current, ILxmax flowing through the inductor and the driver Tr. is described as follows:
ILxmax = Iconst + VIN x TON/L .................................................................................................................Formula 7
With the formula 4,6, and ILxmax is,
ILxmax = VOUT/VIN x IOUT + VIN x TON/(2 x L) ..............................................................................................Formula 8
Therefore, peak current is more than IOUT. Considering the value of ILxmax, the condition of input and output, and external components should be selected. In the formula 7, peak current ILxmax at discontinuous mode can be calculated. Put Iconst=0 in the formula. The explanation above is based on the ideal calculation, and the loss caused by Lx switch and external components is not included. The actual maximum output current is between 50% and 80% of the calculation. Especially, when the ILx is large, or VIN is low, the loss of VIN is generated with the on resistance of the switch. As for VOUT, Vf (as much as 0.3V) of the diode should be considered.
11
R1211x
TIMING CHART
*
R1211x002A/R1211x002C
DTC SS VREF VOUT VFB AMPOUT
EXT
R1 PWM Comparator R2 OP AMP
*
R1211x002B/R1211x002D
DTC SS VREF VOUT VFB AMPOUT
EXT
R1 PWM Comparator R2 OP AMP
Soft-start operation is starting from power-on as follows: (Step1) The voltage level of SS is rising gradually by constant current circuit of the IC and a capacitor. VREF level which is input to OP AMP is also gradually rising. VOUT is rising up to input voltage level just after the power-on, therefore, VFB voltage is rising up to the setting voltage with input voltage and the ration of R1 and R2. AMPOUT is at "L", and switching does not start. (Step2) When the voltage level of SS becomes the setting voltage with the ration of R1 and R2 or more, switching operation starts. VREF level gradually increases together with SS level. VOUT is also rising with balancing VREF and VFB. Duty cycle depends on the lowest level among AMPOUT, SS, and DTC of the 4 input terminals in the PWM comparator.
12
+ + -
EXT
+ + -
EXT
R1211x
(Step3) When SS reaches 1V, soft-start operation finishes. VREF becomes constant voltage (=1V). Then the switching operation becomes normal mode.
SS,VREF VFB SS VFB,VREF DTC AMPOUT AMPOUT Step1 Step2 Step3
VOUT VIN
The operation of Latch protection circuit is as follows: When AMPOUT becomes "H" and the IC detects maximum duty cycle, charge to an external capacitor, C2 of DELAY pin starts. And maximum duty cycle continues and the voltage of DELAY pin reaches delay voltage detector threshold, VDLY, outputs "L" to EXT pin and turns off the external power MOSFET. To release the latch protection operation, make the IC be standby mode with CE pin and make it active in terms of R1211x002B/D version. Otherwise, make supply voltage down to UVLO detector threshold or lower, and make it rise up to the normal input voltage. During the soft-start time, if the duty cycle may be the maximum, protection circuit does not work and DELAY pin is fixed at GND level. The delay time of latch protection can be calculated with C2, VDLY, and Delay Pin Charge Current, IDLY1, as in the next formula. t=C2 x VDLY/IDLY1 Once after the maximum duty is detected and released before delay time, charge to the capacitor is halt and delay pin outputs "L".
Output Short AMPOUT AMPOUT VDLY DTC
DELAY Normal Maxduty Operation Latched
EXT
13
R1211x
TEST CIRCUITS
*
R1211x002A/R1211x002C
Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test
Consumption Current Test
6V
3.3V
A
VIN EXT OSCILLOSCOPE
VIN
VFB
VFB
GND DELAY
GND DELAY
EXT "H" ON Resistance
3.3V VIN EXT OSCILLOSCOPE 150 VFB GND DELAY
EXT "L" ON Resistance
3.3V
VIN
EXT 150
VFB GND DELAY
V
DELAY Pin Charge Current
3.3V
DELAY Pin Discharge Current
2.5V
VIN
VIN
VFB
VFB GND DELAY
GND DELAY
A
A
0.1V
14
R1211x
DELAY Pin Detector Threshold Voltage Test
3.3V VIN EXT OSCILLOSCOPE VFB GND DELAY
AMP "H" Output Current/"L" Output Current Test
3.3V VIN AMPOUT VFB GND DELAY
A
1V 0.9V/1.1V
UVLO Detector Threshold/Hysteresis Range Test
VIN
EXT OSCILLOSCOPE VFB
GND DELAY
Soft-start Time Test
Coil C5 VIN EXT AMPOUT C3 VFB GND DELAY C4 R4 C1 R3 R2 R1 Diode NMOS VOUT C2 OSCILLOSCOPE Rout
Inductor (L) Diode (SD) Capacitors NMOS Transistor Resistors
: 22H (TDK LDR655312T-220) : CRS02 (Toshiba) C1:680pF(Ceramic), C2:22F (Tantalum)+2.2F (Ceramic), C3:68F (Tantalum)+2.2F (Ceramic), C4:2200pF(Ceramic), C5:22F(Tantalum) : IRF7601 (International Rectifier) : R1: 90k, R2:10k, R3:30k, R4:30k, Rout:1k/330
15
R1211x
*
R1211x002B/R1211x002D
Oscillator Frequency, Maximum Duty Cycle, VFB Voltage Test
6V
3.3V
Consumption Current Test
VIN
EXT CE VFB OSCILLOSCOPE
A
VIN CE VFB GND DELAY
GND DELAY
EXT "H" ON Resistance
3.3V
EXT "L" ON Resistance
3.3V
VIN
EXT CE VFB OSCILLOSCOPE 150
VIN
EXT 150 CE
V
VFB GND DELAY
GND DELAY
DELAY Pin Charge Current
3.3V
DELAY Pin Discharge Current
2.5V
VIN CE VFB GND DELAY
VIN CE VFB
A
GND DELAY
A
0.1V
DELAY Pin Detector Threshold Voltage Test
3.3V
Standby Current Test
6V
VIN
EXT CE VFB OSCILLOSCOPE
A
VIN CE VFB GND DELAY
GND DELAY
16
R1211x
UVLO Detector Threshold/ Hysteresis Range Test
6V
VIN EXT CE VFB GND DELAY OSCILLOSCOPE
CE "L" Input Current/"H" Input Current Test
VIN CE VFB GND DELAY
A
0V/6V
CE "L" Input Voltage/"H" Input Voltage Test
2.5V/6V VIN EXT CE VFB GND DELAY OSCILLOSCOPE
Soft-start Time Test
Coil C5 VIN EXT CE C3 VFB GND DELAY 0V/3.3V R3 R2 C1 R1 Diode VOUT C2 OSCILLOSCOPE Rout
NMOS
Inductor (L) Diode (SD) Capacitors
: 22H (TDK LDR655312T-220) : CRS02 (Toshiba) C1 : 680pF (Ceramic), C2: 22F (Tantalum)+2.2F (Ceramic), C3 : 68F (Tantalum)+2.2F (Ceramic), C5: 22F (Tantalum) NMOS Transistor : IRF7601 (International Rectifier) Resistors : R1: 90k, R2: 10k, R3: 30k
17
R1211x
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current
R1211x002A
5.1 L=10H VOUT=5V
R1211x002A
10.2 L=10H VOUT=10V
Output Voltage VOUT(V)
5.0
Output Voltage VOUT(V)
10.0
VIN=2.5V VIN=3.3V 4.9 1 10 100 1000
VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 1000
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002A
15.3 L=10H VOUT=15V
5.1
R1211x002B
L=10H VOUT=5V
Output Voltage VOUT(V)
Output Voltage VOUT(V)
15.0
5.0
VIN=2.5V VIN=3.3V VIN=5.0V 1 10 100 1000
VIN=2.5V VIN=3.3V 4.9 1 10 100 1000
14.7
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002B
10.2 L=10H VOUT=10V
15.3
R1211x002B
L=10H VOUT=15V
Output Voltage VOUT(V)
10.0
VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 1000
Output Voltage VOUT(V)
15.0
VIN=2.5V VIN=3.3V VIN=5.0V 1 10 100 1000
14.7
Output Current IOUT(mA)
Output Current IOUT(mA)
18
R1211x
R1211x002C
5.1 L=22H VOUT=5V
10.2
R1211x002C
L=22H VOUT=10V
Output Voltage VOUT(V)
5.0
Output Voltage VOUT(V)
10.0
VIN=2.5V VIN=3.3V 4.9 1 10 100 1000
VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 1000
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002C
15.3 L=22H VOUT=15V
5.1
R1211x002D
L=22H VOUT=5V
Output Voltage VOUT(V)
15.0
Output Voltage VOUT(V)
5.0
VIN=2.5V VIN=3.3V VIN=5.0V 1 10 100 1000
VIN=2.5V VIN=3.3V 4.9 1 10 100 1000
14.7
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002D
10.2 L=22H VOUT=10V 15.3
R1211x002D
L=22H VOUT=15V
Output Voltage VOUT(V)
10.0
Output Voltage VOUT(V)
15.0
VIN=2.5V VIN=3.3V VIN=5.0V 9.8 1 10 100 1000
VIN=2.5V VIN=3.3V VIN=5.0V 1 10 100 1000
14.7
Output Current IOUT(mA)
Output Current IOUT(mA)
19
R1211x
2) Efficiency vs. Output Current
R1211x002A
100 80 L=10H VOUT=5V 100 80
R1211x002A
L=10H VOUT=10V
Efficiency (%)
60 40 20 0 1 10 100 1000
Efficiency (%)
60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V
VIN=2.5V VIN=3.3V
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002A
100 80 L=10H VOUT=15V 100 80
R1211x002B
L=10H VOUT=5V
Efficiency (%)
60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V
Efficiency (%)
60 40 20 0 1 10 100 1000
VIN=2.5V VIN=3.3V
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002B
100 80 L=10H VOUT=10V 100 80
R1211x002B
L=10H VOUT=15V
Efficiency (%)
60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V
Efficiency (%)
60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V
Output Current IOUT(mA)
Output Current IOUT(mA)
20
R1211x
R1211x002C
100 80 L=22H VOUT=5V 100 80
R1211x002C
L=22H VOUT=10V
Efficiency (%)
60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V
Efficiency (%)
60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002C
100 80 L=22H VOUT=15V 100 80
R1211x002D
L=22H VOUT=5V
Efficiency (%)
Efficiency (%)
60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V
60 40 20 0 1 10 100 1000
VIN=2.5V VIN=3.3V
Output Current IOUT(mA)
Output Current IOUT(mA)
R1211x002D
100 80 L=22H VOUT=10V 100 80
R1211x002D
L=22H VOUT=15V
Efficiency (%)
60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V
Efficiency (%)
60 40 20 0 1 10 100 1000 VIN=2.5V VIN=3.3V VIN=5.0V
Output Current IOUT(mA)
Output Current IOUT(mA)
21
R1211x
3) VFB Voltage vs. Input Voltage (Topt=25C)
R1211x002x
1015 1010 Topt=25C
VFB Voltage(mV)
1005 1000 995 990 985 2 3 4 5 6
Input Voltage VIN(V)
4) Oscillator Frequency vs. Input Voltage (Topt=25C)
R1211x002A/B
900 Topt=25C
R1211x002C/D
400 Topt=25C
Oscillator Frequency(kHz)
800
Oscillator Frequency(kHz)
2 3 4 5 6
350
700
300
600
250
500
200 2 3 4 5 6
Input Voltage VIN(V)
Input Voltage VIN(V)
5) Supply Current vs. Input Voltage (Topt=25C)
R1211x002A
600 500 400 300 200 100 0 2 3 4 5 6 Topt=25C 600 500 400 300 200 100 0 2 3 4 5 6
R1211x002B
Topt=25C
Supply Current(A)
Input Voltage VIN(V)
Supply Current(A)
Input Voltage VIN(V)
22
R1211x
R1211x002C
400 Topt=25C
R1211x002D
400 Topt=25C
Supply Current(A)
Supply Current(A)
300
300
200
200
100
100
0 2 3 4 5 6
0 2 3 4 5 6
Input Voltage VIN(V)
Input Voltage VIN(V)
6) Maximum Duty Cycle vs. Input Voltage (Topt=25C)
R1211x002A/B
96 Topt=25C 96 94 92 90 88 86 84 82 80 2 3 4 5 6 94 92 90 88 86 84 82 80 2 3 4 5 6
R1211x002C/D
Topt=25C
Maximum Duty Cycle(%)
Maximum Duty Cycle(%)
Input Voltage VIN(V)
Input Voltage VIN(V)
7) VFB Voltage vs. Temperature
R1211x002x
1015 1010 VIN=3.3V
VFB Voltage(mV)
1005 1000 995 990 985 -50
-25
0
25
50
75
100
Temperature Topt(C)
23
R1211x
8) Oscillator Frequency vs. Temperature
R1211x002A/B
900 VIN=3.3V 400
R1211x002C/D
VIN=3.3V
Oscillator Frequency(kHz)
800
Oscillator Frequency(kHz)
-25 0 25 50 75 100
350
700
300
600
250
500 -50
200 -50
-25
0
25
50
75
100
Temperature Topt(C)
Temperature Topt(C)
9) Supply Current vs. Temperature
R1211x002A
600 VIN=3.3V 600 500 400 300 200 100 -25 0 25 50 75 100 0 -50
R1211x002B
VIN=3.3V
Supply Current( A)
400 300 200 100 0 -50
Supply Current(A)
500
-25
0
25
50
75
100
Temperature Topt(C)
Temperature Topt(C)
R1211x002C
400 VIN=3.3V 400
R1211x002D
VIN=3.3V
Supply Current(A)
300
Supply Current(A)
-25 0 25 50 75 100
300
200
200
100
100
0 -50
0 -50
-25
0
25
50
75
100
Temperature Topt(C)
Temperature Topt(C)
24
R1211x
10) Maximum Duty Cycle vs. Temperature
R1211x002A/B
96 VIN=3.3V 96 94 92 90 88 86 84 82 80 -50 -25 0 25 50 75 100 94 92 90 88 86 84 82 80 -50 -25 0 25 50 75 100
R1211x002C/D
VIN=3.3V
Maximum Duty Cycle(%)
Maximum Duty Cycle(%)
Temperature Topt(C)
Temperature Topt(C)
11) EXT "H" On Resistance vs. Temperature
R1211x002x
8 VIN=3.3V
EXT "H" ON Resistance()
7 6 5 4 3 2 -50
-25
0
25
50
75
100
Temperature Topt(C)
12) EXT "L" On Resistance vs. Temperature
R1211x002x
5 VIN=3.3V
EXT "L" ON Resistance()
4
3
2
1 -50
-25
0
25
50
75
100
Temperature Topt(C)
25
R1211x
13) Soft-start Time vs. Temperature
R1211x002A/B
16 14 12 10 8 6 -50 VIN=3.3V 16 14 12 10 8 6 -50
R1211x002C/D
VIN=3.3V
Soft-start Time(ms)
-25
0
25
50
75
100
Soft-start Time(ms)
-25
0
25
50
75
100
Temperature Topt(C)
Temperature Topt(C)
14) UVLO Detector Threshold vs. Temperature
R1211x002x
UVLO Detector Threshold(mV)
2300 VIN=3.3V
2250
2200
2150
2100 -50
-25
0
25
50
75
100
Temperature Topt(C)
15) AMP "H" Output Current vs. Temperature
R1211x002A/C
1600 VIN=3.3V
AMP "H" Output Current(A)
1400 1200 1000 800 600 400 -50
-25
0
25
50
75
100
Temperature Topt(C)
26
R1211x
16) AMP "L" Output Current vs. Temperature
R1211x002A
80 VIN=3.3V
80
R1211x002C
VIN=3.3V
AMP "L" Output Current(A)
70 60 50 40 30 20 -50
AMP "L" Output Current(A)
-25 0 25 50 75 100
70 60 50 40 30 20 -50
-25
0
25
50
75
100
Temperature Topt(C)
Temperature Topt(C)
17) DELAY Pin Charge Current vs. Temperature
R1211x002A/B
DELAY Pin Charge Current(A) DELAY Pin Charge Current(A)
7 6 5 4 3 2 -50 VIN=3.3V
7 6 5 4 3 2 -50
R1211x002C/D
VIN=3.3V
-25
0
25
50
75
100
-25
0
25
50
75
100
Temperature Topt(C)
Temperature Topt(C)
18) DELAY Pin Detector Threshold vs. Temperature
R1211x002x
DELAY Pin Detector Threshold(mV)
1040 VIN=3.3V
1020
1000
980
960 -50
-25
0
25
50
75
100
Temperature Topt(C)
27
R1211x
19) DELAY Pin Discharge Current vs. Temperature
R1211x002x
DELAY Pin Discharge Current(A)
10 8 6 4 2 0 -50 VIN=2.5V
-25
0
25
50
75
100
Temperature Topt(C)
20) CE "L" Input Voltage vs. Temperature
R1211x002B/D
1200 VIN=2.5V
CE "L" Input Voltage(mV)
1100 1000 900 800 700 600 -50
-25
0
25
50
75
100
Temperature Topt(C)
21) CE "H" Input Voltage vs. Temperature
R1211x002B/D
1200 VIN=6.0V
CE "H" Input Voltage(mV)
1100 1000 900 800 700 600 -50
-25
0
25
50
75
100
Temperature Topt(C)
28
R1211x
22) Standby Current vs. Temperature
R1211x002B/D
1.0 VIN=6.0V
Standby Current(A)
0.8 0.6 0.4 0.2 0.0 -0.2 -50
-25
0
25
50
75
100
Temperature Topt(C)
23) Load Transient Response
R1211x002A
L=10H VIN=3.3V, C3=22F VOUT=5V, IOUT=1-100mA 5.6
VOUT 5.0 200 100 IOUT 4.4 0
Time (5ms/div)
R1211x002A
Output Current IOUT(mA)
Output Voltage VOUT(V)
29
R1211x
R1211x002A
L=10H VIN=3.3V, C3=22F VOUT=15V, IOUT=1-50mA 16.8 300
200 VOUT 15.0 100
IOUT 13.2 0
Time (5ms/div)
R1211x002B
L=10H VIN=3.3V, C3=22F VOUT=5V, IOUT=1-100mA 5.6 300
200 VOUT 5.0 100
IOUT 4.4 0
Time (5ms/div)
R1211x002B
L=10H VIN=3.3V, C3=22F VOUT=10V, IOUT=1-100mA 11.2 300
200 VOUT 10.0 100
IOUT 8.8 0
Time (5ms/div)
30
Output Current IOUT(mA)
Output Voltage VOUT(V)
Output Current IOUT(mA)
Output Voltage VOUT(V)
Output Current IOUT(mA)
Output Voltage VOUT(V)
R1211x
R1211x002B
L=10H VIN=3.3V, C3=22F VOUT=15V, IOUT=1-50mA 16.8 300
200 VOUT 15.0 100
IOUT 13.2 0
Time (5ms/div)
R1211x002C
L=22H VIN=3.3V, C3=22F VOUT=5V, IOUT=1-100mA 5.6
VOUT 5.0 200 100 IOUT 4.4 0
Time (5ms/div)
R1211x002C
L=22H VIN=3.3V, C3=22F VOUT=10V, IOUT=1-100mA 11.2
VOUT 10.0 200 100 IOUT 8.8 0
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
Output Current IOUT(mA)
Output Voltage VOUT(V)
Output Current IOUT(mA)
Output Voltage VOUT(V)
31
R1211x
R1211x002C
L=22H VIN=3.3V, C3=22F VOUT=15V, IOUT=1-50mA 16.8 300
200 VOUT 15.0 100
IOUT 13.2 0
Time (5ms/div)
R1211x002D
L=22H VIN=3.3V, C3=22F VOUT=5V, IOUT=1-100mA 5.6
VOUT 5.0 200 100 IOUT 4.4 0
Time (5ms/div)
R1211x002D
L=22H VIN=3.3V, C3=22F VOUT=10V, IOUT=1-100mA 11.2
VOUT 10.0 200 100 IOUT 8.8 0
Time (5ms/div)
32
Output Current IOUT(mA)
Output Voltage VOUT(V)
Output Current IOUT(mA)
Output Voltage VOUT(V)
Output Current IOUT(mA)
Output Voltage VOUT(V)
R1211x
R1211x002D
L=22H VIN=3.3V, C3=22F VOUT=15V, IOUT=1-50mA 16.8 300
200 VOUT 15.0 100
IOUT 13.2 0
Time (5ms/div)
24) Power-on Response
R1211x002A
16 14 L=10H VIN=3.3V, IOUT=10mA (c)VOUT=15V 16 14
R1211x002B
L=10H VIN=3.3V, IOUT=10mA (c)VOUT=15V
Output Voltage(V)
12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (b)VOUT=10V (a)VOUT=5V
Output Voltage(V)
12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (b)VOUT=10V (a)VOUT=5V
Time (5ms/div)
Time (5ms/div)
R1211x002C
16 14 L=22H VIN=3.3V, IOUT=10mA (c)VOUT=15V 14 16
R1211x002D
L=22H VIN=3.3V, IOUT=10mA (c)VOUT=15V
Output Voltage(V)
12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (a)VOUT=5V (b)VOUT=10V
Output Voltage(V)
12 10 8 6 4 2 0 0 5 10 15 20 25 VIN (b)VOUT=10V (a)VOUT=5V
Time (5ms/div)
Time (5ms/div)
Output Current IOUT(mA)
Output Voltage VOUT(V)
33
R1211x
25) Turn-on speed with CE pin
R1211x002B
16 14 L=10H VIN=3.3V, IOUT=10mA (c)VOUT=15V 16 14
R1211x002D
L=22H VIN=3.3V, IOUT=10mA
Output Voltage(V)
Output Voltage(V)
12 10 8 6 4 2 0 0 5 10 15 20 25 CE (b)VOUT=10V (a)VOUT=5V
12 10 8 6 4 2 0 0 5 10 15
(c)VOUT=15V (b)VOUT=10V
(a)VOUT=5V CE 20 25
Time (5ms/div)
Time (5ms/div)
34
PACKAGE INFORMATION
PE-SOT-23-6W-0512
*
SOT-23-6W
Unit: mm
PACKAGE DIMENSIONS
2.90.2 1.90.2 (0.95) (0.95) 1.1 +0.2 -0.1 0.80.1 4
6
5
1.80.2
2.80.3
0 to 0.1
1
2
0.15
TAPING SPECIFICATION
0.30.1
1.5 0
+0.1
4.00.1
2.00.05
1 2.0MAX.
2
3 4.00.1
3.3
1.10.1
TR User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
11.41.0 9.00.3
20.5
0 180 -1.5 +1 60 0
210.8
130.2
3.2
8.00.3
6
5
4
3.50.05
1.750.1
0.2 MIN.
+0.1 0.4 -0.2
+0.1 -0.075
PACKAGE INFORMATION
PE-SOT-23-6W-0512
POWER DISSIPATION (SOT-23-6W)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Board Material Board Dimensions Copper Ratio Through-hole Measurement Result
(Topt=25C,Tjmax=125C)
Mounting on Board (Wind velocity=0m/s) Glass cloth epoxy plactic (Double sided) 40mm x 40mm x 1.6mm Top side : Approx. 50% , Back side : Approx. 50% 0.5mm x 44pcs
Standard Land Pattern Power Dissipation Thermal Resistance
600
430mW ja=(125-25C)/0.43W=233C/W
Power Dissipation PD(mW)
500 430 400 300
On Board
40
100 0 0 25 50 75 85 100 Ambient Temperature (C) 125 150
Power Dissipation
40
200
Measurement Board Pattern IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN (SOT-23-6W)
0.7 MAX.
1.0
0.95 0.95 1.9
2.4
(Unit: mm)
PACKAGE INFORMATION
PE-SON-6-0510
*
SON-6
Unit: mm
PACKAGE DIMENSIONS
6 4
2.60.2 3.00.15
0.85MAX.
1
0.130.05
Bottom View
0.1 0.5 0.20.1
Attention: Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns.
TAPING SPECIFICATION
0.20.1 1.5+0.1 0 4.00.1 2.00.05
(0.3)
3
1.34
(0.3)
1.60.2
3.50.05
1.750.1 8.00.3
1.9 1.7MAX. 4.00.1 1.10.1
TR User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
11.41.0 9.00.3
210.8
0 180 -1.5
20.5
130.2 +1 60 0
3.2
PACKAGE INFORMATION
PE-SON-6-0510
POWER DISSIPATION (SON-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Board Material Board Dimensions Copper Ratio Through-hole Measurement Result
(Topt=25C,Tjmax=125C)
Mounting on Board (Wind velocity=0m/s) Glass cloth epoxy plactic (Double sided) 40mm x 40mm x 1.6mm Top side : Approx. 50% , Back side : Approx. 50% 0.5mm x 44pcs
Standard Land Pattern Power Dissipation Thermal Resistance
600
Free Air 250mW -
500mW ja=(125-25C)/0.5W=200C/W
Power Dissipation PD(mW)
500 400 300 200 100 0 0 25 250
On Board
40
Free Air
50 75 85 100 Ambient Temperature (C)
125
150
Power Dissipation
40
Measurement Board Pattern IC Mount Area (Unit : mm)
RECOMMENDED LAND PATTERN
0.25 0.5
1.05 0.75
(Unit: mm)
MARK INFORMATION
ME-R1211N-0310
R1211N SERIES MARK SPECIFICATION * SOT-23-6W
1 3
1 2 3 4
, ,
2 4
: Product Code (refer to Part Number vs. Product Code) : Lot Number
*
Part Number vs. Product Code
Product Code
1 2
Part Number R1211N002A R1211N002B R1211N002C R1211N002D
L L L L
0 1 2 3
MARK INFORMATION
ME-R1211D-0310
R1211D SERIES MARK SPECIFICATION * SON-6
1
, ,
2 4
: Product Code (refer to Part Number vs. Product Code) : Lot Number
1
2
3
3
4
*
Part Number vs. Product Code
Product Code
1 2
Part Number R1211D002A R1211D002B R1211D002C R1211D002D R1211D100A R1211D101A
Part Number R1211D102A R1211D101C R1211D102C R1211D103A R1211D103C R1211D104A
Product Code
1 2
L L L L L L
0 1 2 3 4 5
L L L L L L
6 7 8 9 A B


▲Up To Search▲   

 
Price & Availability of R1211N002A06

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X